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SUMMARY

The influence of the exit boundary conditions on the vanishing first derivative of the velocity components
and constant pressure on the large eddy simulation of the fully developed turbulent channel flow has been
investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit
boundary conditions introduce some small disturbances that are mostly damped by the grid stretching.
The difference of rms values between the fully developed turbulent channel flow with periodicity
conditions and the fully developed channel flow using inlet and the exit boundary conditions is less than
10% for the equidistant grids and less than 5% for the stretched grids. The chosen boundary conditions
are of interest because they may be used in complex problems with back flow at the exit. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large eddy simulation of turbulent channel flows has been reported first by Kim and Moin [1]
who considered a fully developed turbulent flow with periodicity conditions between the inlet
and the exit of the computational domain. In such simulations, the problem of specification of
the exit boundary condition can be avoided. The exit boundary condition for direct and large
eddy simulation of turbulent flows plays a far more important role with respect to damping
than for laminar flows. However, in real flows, the periodicity condition can be used more as
an exception than as a rule. For example, in the case of impinging jet flows, periodicity
conditions at the exit boundary can not be used.

Some investigations have been reported on the use of non-periodic exit conditions. Werner
[2] has used vanishing first or second derivative conditions for the velocity components:
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l =0; l=1 or 2. (1)
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Using such von Neumann-type boundary conditions he calculated turbulent channel flows via
a Smagorinsky–Lilly [2] model. Such boundary conditions are often used for laminar flows,
where only spatially smooth fields of flow variables exist. This means that further spatial
development of flow is negligibly small.

Werner [2] pointed out that a very smooth field can be represented in Fourier space as one
wave with a large wavelength together with far more waves with negligibly small wavelength.
The difference form of the vanishing first derivative, corresponds exactly to waves with infinite
wavelengths. The difference form of the vanishing second derivative with equidistant grids
corresponds to a wave of infinite length and a wave with finite length, which is large related
to the grid distances.

In contrast to laminar flows one can find very large gradients in turbulent flows, i.e. very
rough fields. So there are also waves with short wavelengths (high frequencies) that are
reflected at the exit boundary. These reflections mean disturbances to the results of the
computational domain. Finally, it should be mentioned that vanishing higher derivatives as
exit conditions can lead to numerical instabilities [2].

An alternative class of boundary conditions are the so-called ‘non-reflecting boundary
conditions’, which were originally developed for hyperbolic equations [3–6,17].

Jin and Braza [7] used such a condition for an elliptic problem. They calculated the
transition of free shear layers using the two-dimensional incompressible unsteady Navier–
Stokes equations.

The basic idea of their boundary condition formulation is the requirement that the waves of
short length could pass through the boundary without being reflected. Based on the two-di-
mensional wave equation
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they developed the following
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where u1 is the velocity in the main flow direction.
Comparison of the coefficients of this equation with the Navier–Stokes equation provides

the matched form of the equation [3].
Another formulation of non-reflecting boundary condition is presented by Bestek et al. [8]

for calculation of transition of boundary layers, based on the velocity–vorticity formulation of
the Navier–Stokes equations. The second derivatives, in the main flow direction (normal to
the exit plane) are set to zero. So there is a damping that leads to a relaminarization of the
flow near to the exit plane and the reflection of disturbances is decreased.

Richter et al. [9,10] have used ‘frozen turbulence’ as the boundary condition in flow with
pressure gradient. This technique is based on the assumption that the time variation of the
turbulent fluctuations (the difference of instantaneous values of the flow variables from their
average values) depends on the convective transport, i.e. the instantaneous values at the exit
plane depend on the ones directly at the upstream. Richter et al. [9,10] developed a relationship
between the fluctuations at the exit plane and the plane directly upstream of the exit,

F¦(nx, j, k)�n=F¦(il, j, k)�n−Dn, (4)

Dn( j, k)=
Dx

[Dt ·uc( j, k)]
(5)
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where uc is the characteristic convective velocity at the exit in the x-direction and is set equal
to �u(il, j, k)�. The sign, � � symbolizes the time-averaged value. It is necessary to save enough
time levels (Dn levels for getting F%%�n−Dn) for implementation of this boundary condition. With
the following equation

F(i, j, k)=F0 (i, j, k)+F¦(i, j, k), (6)

the values at the exit plane can be defined. The average value F is calculated by using a linear
extrapolation of the variables from the interior points.

The purpose of the present work is to perform a LES for fully developed turbulent flows in
a rectangular channel with an exit boundary condition and compare the results with computa-
tions with periodicity conditions in order to determine the influence of the boundary condition
(see Figure 1). The underlying idea is to use an exit boundary condition on a channel with fully
developed turbulent flow at the entry. It is expected that the flow will remain fully developed
turbulent and the chosen exit boundary condition should have a negligible effect on the flow.

For velocity boundary conditions it was decided to use the vanishing first derivative
conditions like Werner [2] described above. One important aspect for this choice was the
experience [11] that this condition in principle allows the calculation of complex flow structures
like backflow at the exit plane caused by the entrainment. So it is interesting to investigate
such a condition because there are no exact formulations for the LES for such flows (like jets,
impinging jets, etc.) so far. The flow field of interest is non-periodic and a backflow may
appear at the exit. Jin and Braza [7] showed good results for the simulation of the two-dimen-
sional Navies–Stokes equations for transitional free shear flow. But it is not known if their
non-reflecting conditions are suitable for calculating three-dimensional turbulent flows by LES
too. Besides, their boundary condition will not allow backflow at the exit plane. Same is true
for the condition used by Bestek et al. [8]. The ‘frozen turbulence’ condition from Richter et
al. [9] is expensive because of the necessity of large computer time for sampling the variables
at different time levels.

2. NUMERICAL METHOD

Consider a rectangular channel of length L (see Figure 1). A periodicity boundary condition
at x=0 and x=L/2 is used so that fully developed turbulent flow is simulated. Then the
computation is further continued to x=L, where an exit boundary condition is used. A
comparison of the flow fields at the first and the second channel (Figure 1) would show the
influence of the exit boundary conditions. The filtered (top hat filter is used) continuity and
Navier–Stokes equations are

Figure 1. Schematic of the geometry.
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For the subgrid scales, the Smagorinsky–Lilly model is used (with Cs=0.1).

tij=u %iu %j= −2nTS( ij+
dij

3
u %ku %k, (8)
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3. BOUNDARY CONDITIONS

No-slip conditions have been used on the walls for the convective terms. The no-slip condition
for the diffusive terms were implemented by using the Schumann assumption [12] in conjunc-
tion with the logarithmic law of the wall. Periodicity conditions have been used at x=0 and
x=L/2. At x=L we use

(ui

(x1

=0

and

p=constant.

Use of the coupled vanishing first derivative boundary condition with p=constant is based
on an outflow boundary condition of Rannacher [13]. Earlier investigations showed that these
conditions are suitable for the calculation of backflow caused by entrainment. The assumption
of constant pressure is acceptable because at the exit plane, the fluid leaves the computational
domain towards the ambience with a constant pressure.

The handling of backflow is obviously one of the biggest problems for simulation of
impinging jet flow (see Hoffmann and Benocci [14]). Some authors presented conditions where
the assumption of vanishing first derivatives in main flow direction for the base flow [15] is
necessary. But this enlarges the computational domain and thereby the computational time.
Because the authors want to investigate impinging jet flows by LES in future, they decided to
select the conditions mentioned above.

4. METHOD OF SOLUTION

The basic equations have been solved by a fractional step method of Kim and Moin [1], which
uses Adams–Bashforth and Crank–Nicholson difference schemes and a SIP solver (Stone [16])
for the numerical solution of the pressure Poisson equation.
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Figure 2. Schematic of the computational scheme.

5. RESULTS AND DISCUSSION

The Reynolds number based on the friction velocity and half of the channel height is

Ret=
ut(h/2)

n
=180.

Each channel was discretized using 34×34×18=20808 grids. The non-dimensional length in
the x-direction was 8.5 for each half, in the y-direction 4 and in the z-direction 2 (Dx=0.25,
Dy=Dz=0.125).

Besides, another modification was included during the implementation of the exit boundary
condition.

The length of the second half of the channel, i.e. the part where it was intended to
investigate the influence of the boundary condition, is increased to L=9.145 by stretching the
last eight grid cells in the x-direction steadily by 10% of the grid distance of the upsteam
neighbouring cell (see Figure 2). With this stretching, the numerical viscosity is increased. This
stretching is probably equivalent to a buffer layer. The computations reveal how the non-
equidistant grids influence the results 6is a 6is the case of equidistant grids.

For the investigation of the influence of the boundary conditions, the second channel is
divided in two parts (each part with 17 grid cells, see Figure 2) so that one can observe the
influence of the exit plane in the upstream direction.

Figures 3–5 compare the distribution of the different rms values in the three dimensions.
Obviously, the rms values for the channel with the experimental boundary conditions are
higher than that of the periodic channel. The plots for the two parts of the channel with these
boundary conditions are nearly identical. This indicates an influence of the exit boundary
condition through the whole channel. The rms values for the test cases show nearly constant
deviation from the values of periodic channel near the core.

In Table I, the local maxima (max) and minima (min) of each rms component of the
periodic and the two parts of the test channel are compared. The differences of the each part
of the second channel expressed in percent are related to the periodic channel. The values of
the two parts of the test channel differs at both maxima and minima. But the largest difference,
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Figure 3. u rms, equidistant grid.

the rms value in the y-direction, is only 10.27%. All of the other differences are lower. This
boundary condition introduces a disturbance in the whole test channel, which is expressed by
higher rms values. But the effect of this disturbance is relatively low. Both parts of the test
channel are influenced equally.

It may be mentioned that the differences of the maximum rms values are smaller than the
differences of the minimum values (see Table I). This means that the locations where the
fluctuation level is high are less influenced than the locations where the fluctuation level is low.

Figures 6–8 show the distribution of rms values of velocity components for the case of grid
spreading. The profiles are qualitatively similar to those obtained by Kim et al. [18] who
validated their results against experiments. The values of the first part of the test channel are

Figure 4. 6 rms, equidistant grid.
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Figure 5. w rms, equidistant grid.

above the values of the periodic channel. The values of the second part are equal or, slightly
lower than the values of the periodic channel. This indicates a decrease in the fluctuations
because of the damping effect of the grid spreading. Table II shows the maximum and
minimum rms values and the differences of the two parts of the test channel from the periodic
channel. The mentioned tendencies can be confirmed again. The rms values of the first part are
higher than that of the periodic channel, but lower than that due to the equidistant grids (see
Table I). All of the values of the second part are even lower than the values of the periodic
channel. This means, that in the case of grid spreading, there is also an influence of the
boundary condition. But as compared with the case of equidistant grid a decrease in the
differences with regard to the periodic channel could be achieved. The reason is the increase
of the damping effect via numerical viscosity because of the grid spreading. This spreading
influences very strongly the calculation of the rms values of the second half of the test channel.
In this part the damping effect is larger. This explains the cause of low rms values.

Table I. Comparison of local maxima (Max) and minima (Min) for different 1D ensemble-averaged
values, equidistant grida

2. Part test Difference DifferencePeriodic 1. Part test
channelchannel of 1 (%)channel of 2 (%)

u rms 4.85 3.88Min 1.028 1.075 1.067
1.991.612.1542.1462.112Max

0.6430.644 10.100.584 10.27Min6 rms
0.928 4.64 5.10Max 0.883 0.924

10.02 9.470.549 0.604w rms Min 0.601
0.672 4.88 5.830.666Max 0.635

−6.17Reynolds stress Min −0.519 −0.543 −0.551 −4.62
4.73 3.97Max 0.529 0.554 0.550

a Averaging was done in the x- and y-direction; the differences of each part of the second (test-) channel expressed
in percent are referred to the values of the periodic channel.
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Figure 6. u rms, non-equidistant grid.

Figures 9 and 10 show the Reynolds stresses on the xz-plane. Results are comparable with
those of Reference[18]. Table I compares the maximum and minimum values of the Reynolds
stresses. One can point out that the simulation using the present boundary condition yields
acceptable results. In the case of equidistant grids, the maximum difference from the periodic
case for the local maxima and minima is −6.17% (see Table I, the negative sign results from
the definition of the axis system). The comparison of the averaged centerline velocity confirm
this conclusion (see Tables III and IV).

In the case of grid spreading, the results are even better, see Figure 10 and Table IV. Here
the maximum difference for the comparison of the local maxima and minima is only 2.4%. The
comparison of the centerline velocities shows correct trend.

Figure 7. 6 rms, non-equidistant grid.
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Figure 8. w rms, non-equidistant grid.

6. CONCLUSION

The influence of the coupled exit boundary conditions of Neumann and Dirichlet type on LES
of turbulent channel flows has been investigated. A comparison of the results with the that of
a channel using periodic boundary condition has been made. Besides, a modification based on
grid stretching near the exit plane in conjunction with the proposed boundary conditions has
been presented.

The results confirm the conjecture, that the disturbance caused by the boundary conditions
at the exit plane is transported in the upstream direction. The influence of the chosen
boundary conditions lead to slightly increased turbulent fluctuations. This behaviour is
expressed by higher rms values.

The results with grid spreading, because of the increased damping of non-equidistant grids,
show better agreement with the fully developed results.

Table II. Comparison of local maxima (Max) and minima (Min) for different 1D esemble-averaged
values, non-equidistant grida

1. Part test 2. Part test Difference DifferencePeriodic
of 2 (%)channelchannel of 1 (%)channel

u rms 0.989 2.42 −0.30Min 0.992 1.016
−1.701.042.0812.1392.117Max
−0.510.620 5.620.587 0.584Min6 rms

0.859 3.37 −3.59Max 0.891 0.921
0.542 6.06 −0.550.545 0.578w rms Min

−3.680.671 2.760.6290.653Max
−0.93Reynolds stress 1.68Min −0.535 −0.540 −0.526

0.501 0.97 −2.40Max 0.513 0.518

a Averaging was done in the x- and y-direction; the differences of each part of the second (test-) channel expressed
in percent are referred to the values of the periodic channel.
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Figure 9. Reynolds stresses (uw component in xz-plane).

Figure 10. Reynolds stresses (uw component in xz-plane).

Table III. Comparison of the averaged centerline velocities, equidistant grid

Periodic 1. Part test 2. Part test Difference Difference
channel of 1 (%)channel of 2 (%)channel

18.65 18.57 18.54Centerline velocity −0.43% −0.59%

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 763–773 (1999)
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Table IV. Comparison of the averaged centerline velocities, non-equidistant grid

Periodic Difference1. Part test 2. Part test Difference
of 1 (%)channelchannel of 2 (%)channel

18.58 18.51 18.48Centerline velocity −0.38% −0.53%

It was also found that the disturbance caused by the boundary conditions is small at places
where the flow fluctuates strongly. One can expect that this boundary condition will yield good
results for other complex flows especially with high turbulent fluctuations.
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